

MH-CET-2015 Subjects: Physics, Chemistry & Biology

Question Booklet Version	MH-CET-2015 Roll No.						Question Booklet Sr. No.	
11							-]	
		Angua	ar She	et No				

your Answer Sheet)

Day and Date: Thursday, 07th May, 2015

(Write this number on

Duration: 3.00 Hours Total Marks: 200

(Write this number on

your Answer Sheet)

This is to certify that, the entries of MH-CET Roll No. and Answer Sheet No. have been correctly written and verified.

Candidate's Signature

Invigilator's Signature

Instructions to Candidates

- 1. This question booklet contains 200 Objective Type Questions (Multiple Choice Questions (MCQ)) in the subjects of Physics (50), Chemistry (50) and Biology (100).
- 2. The question paper and OMR (Optical Mark Reader) Answer Sheet is issued separately at the start of the examination.
- 3. Choice and sequence for attempting questions will be as per the convenience of the candidate.
- 4. Candidate should carefully read the instructions printed on the Question Booklet and Answer Sheet and make the correct entries on the Answer Sheet. As Answer Sheets are designed to suit the OPTICAL MARK READER (OMR) SYSTEM, special care should be taken to mark the entries correctly. Special care should be taken to fill QUESTION BOOKLET VERSION, SERIAL No. and MH-CET Roll No. accurately. The correctness of entries has to be cross-checked by the invigilators. The candidate must sign on the Answer Sheet and Question Booklet.
- 5. Read each question carefully.
- 6. Determine the one correct answer from out of the four available options given for each question.
- 7. Fill the appropriate circle completely like this ●, for answering a particular question. Mark with Black ink ball point pen only.
- 8. Each question with correct response shall be awarded one (1) mark. There shall be no negative marking. No mark shall be granted for marking two or more answers of same question, scratching or overwriting.
- 9. Use of whitener or any other material to erase/hide the circle once filled is not permitted.
- 10. Avoid overwriting and/or striking of answers once marked.
- 11. Rough work should be done only on the blank space provided on the Question Booklet. **Rough work should** not be done on the Answer Sheet.
- 12. The required mathematical tables (Log etc.) is provided along with the question booklet.
- 13. Immediately after the prescribed examination time is over, the Question Booklet and Answer sheet is to be returned to the Invigilator. Confirm that both the Candidate and Invigilator have signed on question booklet and answer sheet.
- 14. No candidate is allowed to leave the examination hall till the end of examination.

-3-PHYSICS

1.	In th	e expression for Bo	oyle's law, the produ	ct 'P	'V' has dimensions	s of
	A)	force	B) impulse	C)	energy	D) momentum
2.	The	difference between	n angular speed of mi	nute	hand and second	hand of a clock is
	A)	$\frac{59\pi}{900}$ rad/s		B)	$\frac{59\pi}{1800} \text{ rad/s}$	
	C)	$\frac{59\pi}{2400}$ rad/s		D)	$\frac{59\pi}{3600}$ rad/s	
3.		· ·				lus 'Y' and coefficient of linear by the rod when heated is
	A)	$\frac{YA \alpha Lt^2}{2}$		B)	$\frac{YA\alpha^2\;Lt^2}{2}$	
	C)	$\frac{YA\alpha^2\;L^2t^2}{2}$		D)	$\frac{YA\alphaLt}{2}$	
4.	In so	onometer experime	nt, the bridges are sep	para	ted by a fixed dista	nnce. The wire which is slightly
	elast	ic, emits a tone of fa	requency 'n' when he	ld by	y tension 'T'. If the	tension is increased to '4T', the
	tone	emitted by the wire	e will be of frequency	y		
	A)	n		B)	2n	
	C)	Slightly greater that	an 2n	D)	Slightly less than	2n
5.	A pa	rticle performs S.H	I.M. with amplitude 2	5 cn	n and period 3 s. Th	ne minimum time required for it
	to m	ove between two p	oints 12.5 cm on eith	er si	de of the mean pos	sition is
	A)	0.6 s	B) 0.5 s	C)	0.4 s	D) 0.2 s

6. The pitch of the whistle of an engine appears to drop to $\left(\frac{5}{6}\right)^{th}$ of original value

when it passes a stationary observer. If the speed of sound in air is 350 m/s then the speed of engine is

A) 35 m/s

B) $70 \,\mathrm{m/s}$

C) 105 m/s

- D) 140 m/s
- 7. A solid cylinder has mass 'M', radius 'R' and length 'l'. Its moment of inertia about an axis passing through its centre and perpendicular to its own axis is

A)
$$\frac{2MR^2}{3} + \frac{Ml^2}{12}$$

B)
$$\frac{MR^2}{3} + \frac{Ml^2}{12}$$

C)
$$\frac{3MR^2}{4} + \frac{Ml^2}{12}$$

D)
$$\frac{MR^2}{4} + \frac{Ml^2}{12}$$

- 8. A particle is executing S.H.M. of periodic time 'T'. The time taken by a particle in moving from mean position to half the maximum displacement is $(\sin 30^\circ = 0.5)$
 - A) $\frac{T}{2}$

B) $\frac{T}{4}$

C) $\frac{T}{8}$

- D) $\frac{T}{12}$
- 9. The dimensions of Stefan's constant are
 - A) $[M^0 L^1 T^{-3} K^{-4}]$

B) $[M^1 L^1 T^{-3} K^{-3}]$

C) $[M^1 L^2 T^{-3} K^{-4}]$

- D) $[M^1 L^0 T^{-3} K^{-4}]$
- 10. An open and closed organ pipe have the same length. The ratio of 'p'th mode of frequency of vibration of air in two pipes is
 - A) p(2p + 1)
- B) $\frac{2p}{2p-1}$
- C) p
- D) 1

11. A cord is wound around the circumference of wheel of radius 'r'. The axis of the wheel is horizontal and moment of inertia about it is 'I'. The weight 'mg' is attached to the end of the cord and falls from rest. After falling through a distance 'h', the angular velocity of the wheel will be

A)
$$[mgh]^{\frac{1}{2}}$$

B)
$$\left[\frac{2 \operatorname{mgh}}{1 + 2 \operatorname{mr}^2}\right]^{\frac{1}{2}}$$

C)
$$\left[\frac{2 \, \text{mgh}}{1 + \text{mr}^2}\right]^{\frac{1}{2}}$$

D)
$$\left[\frac{mgh}{I+mr^2}\right]^{1/2}$$

12. A toy cart is tied to the end of an unstretched string of length 'l'. When revolved, the toy cart moves in horizontal circle with radius '2l' and time period T. If it is speeded untill it moves in horizontal circle of radius '3l' with period T₁, relation between T and T₁ is (Hooke's law is obeyed)

$$A) T_1 = \frac{2}{\sqrt{3}} T$$

B)
$$T_1 = \sqrt{\frac{3}{2}} T$$

C)
$$T_1 = \sqrt{\frac{2}{3}} T$$

$$D) T_1 = \frac{\sqrt{3}}{2} T$$

13. In a pipe open at both ends, ' n_1 ' and ' n_2 ' be the frequencies corresponding to vibrating lengths ' l_1 ' and l_2 respectively. The end correction is

A)
$$\frac{n_1 l_1 - n_2 l_2}{2(n_1 - n_2)}$$

B)
$$\frac{n_2 l_2 - n_1 l_1}{2(n_2 - n_1)}$$

C)
$$\frac{n_2 l_2 - n_1 l_1}{2(n_1 - n_2)}$$

D)
$$\frac{n_1 l_1 - n_2 l_2}{(n_1 - n_2)}$$

14. A mass is suspended from a spring having spring constant 'K' is displaced vertically and released, it oscillates with period 'T'. The weight of the mass suspended is (g = gravitational acceleration)

A)
$$\frac{\text{KTg}}{4\pi^2}$$

B)
$$\frac{KT^2g}{4\pi^2}$$
 C) $\frac{KTg}{2\pi^2}$

C)
$$\frac{\text{KTg}}{2\pi^2}$$

D)
$$\frac{KT^2g}{2\pi^2}$$

15. A satellite of mass 'm' is revolving in circular orbit of radius 'r' round the earth. Its angular momentum w.r.t. the centre of its orbit is (M = mass of earth, G = universal gravitational constant)

A) $(GMmr)^{\frac{1}{2}}$

B) $(GMm^2r)^{\frac{1}{2}}$

C) $(GMm^2r^2)^{\frac{1}{2}}$

D) $(G M^2 m^2 r)^{\frac{1}{2}}$

16. A liquid rises to a height of 1.8 cm in a glass capillary 'A'. Another glass capillary 'B' having diameter 90% of capillary 'A' is immersed in the same liquid. The rise of liquid in capillary 'B' is

A) 1.4 cm

B) 1.8 cm

C) 2.0 cm

D) 2.2 cm

17. A particle of mass 'm' is moving in circular path of constant radius 'r' such that centripetal acceleration is varying with time 't' as K^2 r t^2 where K is a constant. The power delivered to the particle by the force acting on it is

A) $m^2 K^2 r^2 t^2$

B) $mK^2 r^2 t$

C) m K^2 r t^2

D) m K r^2 t

18. A simple pendulum is oscillating with amplitude 'A' and angular frequency 'ω'. At displacement 'x' from mean position, the ratio of kinetic energy to potential energy is

A) $\frac{x^2}{\Delta^2 - x^2}$ B) $\frac{x^2 - A^2}{x^2}$ C) $\frac{A^2 - x^2}{x^2}$ D) $\frac{A - x}{x}$

19. The equation of the progressive wave is $y = a \sin 2\pi \left(nt - \frac{x}{5}\right)$. The ratio of maximum particle velocity to wave velocity is

A) $\frac{\pi a}{5}$

B) $\frac{2\pi a}{5}$ C) $\frac{3\pi a}{5}$ D) $\frac{4\pi a}{5}$

20. Let g_h and g_d be the acceleration due to gravity at height h above the earth's surface and at depth 'd' below the earth's surface respectively. If $g_h = g_d$ then the relation between 'h' and 'd' is

A) d = h

B) $d = \frac{h}{2}$ C) $d = \frac{h}{4}$ D) d = 2h

- 21. A rope 1 cm in diameter breaks if tension in it exceeds 500 N. The maximum tension that may be given to a similar rope of diameter 2 cm is
 - A) 2000 N
- B) 1000 N
- C) 500 N
- D) 250 N
- 22. The length and diameter of a metal wire is doubled. The fundamental frequency of vibration will change from 'n' to (Tension being kept constant and material of both the wires is same)
 - A) $\frac{n}{4}$

- B) $\frac{n}{8}$ C) $\frac{n}{12}$ D) $\frac{n}{16}$
- 23. A hollow sphere of mass 'M' and radius 'R' is rotating with angular frequency 'ω'. It suddenly stops rotating and 75% of kinetic energy is converted to heat. If 'S' is the specific heat of the material in $\sqrt{\frac{J}{kg}}$ K then rise in temperature of the sphere is (M.I. of hollow sphere = $\frac{2}{3}$ MR²)

- A) $\frac{R\omega}{4S}$ B) $\frac{R^2\omega^2}{4S}$ C) $\frac{R\omega}{2S}$ D) $\frac{R^2\omega^2}{2S}$
- 24. A large number of liquid drops each of radius 'a' are merged to form a single spherical drop of radius 'b'. The energy released in the process is converted into kinetic energy of the big drop formed. The speed of the big drop is
 - $[\rho = \text{density of liquid}, T = \text{surface tension of liquid}]$

A)
$$\left[\frac{6T}{\rho}\left(\frac{1}{a} - \frac{1}{b}\right)\right]^{\frac{1}{2}}$$

B)
$$\left[\frac{6T}{\rho}\left(\frac{1}{b} - \frac{1}{a}\right)\right]^{\frac{1}{2}}$$

C)
$$\left[\frac{\rho}{6T}\left(\frac{1}{a} - \frac{1}{b}\right)\right]^{\frac{1}{2}}$$

D)
$$\left[\frac{\rho}{6T}\left(\frac{1}{b} - \frac{1}{a}\right)\right]^{\frac{1}{2}}$$

-8-

25.	A black body radiates heat at temperatures	T_1 ' and T_2 ' $T_2 > T_1$. The frequency corresponding to
	maximum energy is	
	A) more at T ₁	B) more at T ₂
	C) equal for T ₁ and T ₂	D) independent of T_1 and T_2
26.	For diamagnetic materials, magnetic suscep	tibility is
	A) small and negative	B) small and positive
	C) large and negative	D) large and positive
27.	For Balmer series, wavelength of first line i	s ' λ_1 ' and for Brackett series, wavelength of first line is
	' λ_2 ' then $\frac{\lambda_1}{\lambda_2}$ is	
	A) 0.081	B) 0.162
	C) 0.198	D) 0.238
28.	The distance of a point on the screen from 1.23×10^{-5} m. If wavelength of light used is	m two slits in biprism experiment is 1.8×10^{-5} m and 6000 Å, the fringe formed at that point is
	A) 10 th bright	B) 10 th dark
	C) 9 th bright	D) 9 th dark
29.	Same current is flowing in two a.c. circuits.	First contains only inductance and second contains only
	capacitance. If frequency of a.c. is increase	d for both, the current will
	A) increase in first circuit and decrease in	second
	B) increase in both circuits	
	C) decrease in both circuits	
	D) decrease in first circuit and increase in	second

30. The difference in the effective capacity of two similar capacitors when joined in series and then in parallel is 6 µF. The capacity of each capacitor is

A) $2\mu F$

B) 4 uF

C) 8 uF

D) 16 µF

31. Which logic gate produces 'LOW' output when any of the inputs is 'HIGH'?

A) AND

B) OR

C) NAND

D) NOR

32. An electron of mass 'm' and charge 'q' is accelerated from rest in a uniform electric field of strength 'E'. The velocity acquired by it as it travels a distance 'l' is

A) $\left[\frac{2Eql}{m}\right]^{\frac{1}{2}}$

B) $\left[\frac{2Eq}{ml}\right]^{1/2}$

C) $\left[\frac{2 \operatorname{Em}}{\operatorname{q}l}\right]^{\frac{1}{2}}$

D) $\left[\frac{\text{Eq}}{\text{m}l}\right]^{1/2}$

33. A light is travelling from air into a medium. Velocity of light in a medium is reduced to 0.75 times the velocity in air. Assume that angle of incidence 'i' is very small, the deviation of the ray is

A) i

B) $\frac{i}{3}$

C) $\frac{i}{4}$ D) $\frac{3i}{4}$

34. The electric field intensity at a point near and outside the surface of a charged conductor of any shape is 'E₁'. The electric field intensity due to uniformly charged infinite thin plane sheet is 'E₂'. The relation between E_1 and E_2 is

A) $2E_1 = E_2$

B) $E_1 = E_2$

C) $E_1 = 2E_2$

D) $E_1 = 4E_2$

-10-

35.	Sens	sitivity of a moving	coil galvanometer ca	an be	e increased by	
	A)	decreasing the nur	mber of turns of coil			
	B)	increasing the nun	nber of turns of coil			
	C)	decreasing the are	a of a coil			
	D)	by using a weak m	nagnet			
36.	For	the hydrogen atom,	the energy of radiation	on ei	mitted in the transi	tion from 4 th excited state to 2 nd
	exci	ted state, according	g to Bohr's theory is			
	A)	0.567 eV	B) 0.667 eV	C)	0.967 eV	D) 1.267 eV
37.	Two	coherent monochro	matic light beams of i	ntens	sities '4 I' and '9 I' a	are superimposed. The maximum
	and	minimum possible	intensities in the resu	lting	beam are	
	A)	3 I and 2 I		B)	9 I and 5 I	
	C)	16 I and 3 I		D)	25 I and I	
38.	The	resistances in left a	and right gap of a mo	eter 1	bridge are 20Ω an	d 30Ω respectively. When the
	resis	stance in the left gap	p is reduced to half it	s val	ue, the balance po	int shifts by
	A)	15 cm to the right		B)	15 cm to the left	
	C)	20 cm to the right		D)	20 cm to the left	
39.	For	the same angle of in	ncidence, the angles of	of ref	raction in media 'I	P', 'Q', 'R' and 'S' are 50°, 40°,
	30°,	20° respectively. T	The speed of light is n	ninin	num in medium	
	A)	P	B) Q	C)	R	D) S
			SPACE FOR	ROU	JGH WORK	

	SPACE FOR ROUGH WORK							
	Α) 100Ω	Β) 200Ω	C) 300Ω	D) 400Ω				
	when 500Ω resistance	ce is connected in se	ries. Galvanometer r	resistance is				
45.	A range of galvanom	neter is 'V', when 50	Ω resistance is conn	ected in series. Its range gets doubled				
	D) intensities of in-	dividual sources are	4 and 3 units respect	rively				
	C) the ratio of their	r amplitudes is 4						
	B) intensities of in	dividual sources are	25 and 9 units respec	ctively				
	A) the ratio of their	•						
	means	11. 1 . 5						
44.	_	slit experiment, the	ratio of intensities of	of bright and dark bands is 16 which				
	A) 66	B) 67	C) 69	D) 71				
43.	For a transistor, the c	•						
	A) π volt	B) $\frac{\pi}{2}$ volt	C) $\frac{\pi}{3}$ volt	D) $\frac{\pi}{4}$ volt				
	$i = 5 \sin (10\pi t)$ then	n the maximum valu	e of e.m.f. induced in	n coil B is				
42.	Two coils A and B	have mutual indu	ctance 2×10 ⁻² hen	ry. If the current in the primary is				
	A) 2.00 m	B) 2.25 m	C) 2.50 m	D) 2.75 m				
	balancing length of v	wire will be						
	balances against 250	cm length of wire. It	f length of potentiom	eter wire is increased by 1 m, the new				
41.	A potentiometer win	re of length 10 m is	connected in series	s with a battery. The e.m.f. of a cel				
	C) attenuation		D) amplificatio	n				
	A) demodulation		B) modulation					
то.		ining of information.		the receiver is termed as				

11 -12-

	rate of 3 V/S. The displacement current in the capacitor is						
	Α) 2μF	B) 3μF	C) 5 µF	D) 6μF			
47.	-		series with another ca The ratio of potential	pacitor $C_2 = 1 \mu F$. The compacross C_2 to C_1 is	ıbination is		
	A) 2:1	B) 4:1	C) 8:1	D) 16:1			
48.	3. When monochromatic light of wavelength ' λ ' is incident on a metallic surface, the stopping potential for photoelectric current is ' $3V_0$ '. When same surface is illuminated with light of wavelength ' 2λ '.						
		al is ${}^{\prime}V_0{}^{\prime}$. The thre	eshold wavelength for	this surface when photoele	ctric effec		
	takes place is						
	Α) λ	Β) 2λ	C) 3λ	D) 4λ			
49.	4			'n'. It is rewound so that rachent of new coil to that of original			
	A) 1	B) $\frac{1}{2}$	C) $\frac{1}{4}$	D) $\frac{1}{8}$			
50.	The de-Broglie way	elength 'λ' of a pa	article				
	A) is proportional	to mass					
	B) is proportional	to impulse					
	C) is inversely pro	portional to impul	se				
	D) does not depen	ıd on impulse					

46. The capacity of a parallel plate air capacitor is $2\,\mu F$ and voltage between the plates is changing at the

CHEMISTRY

51. Which of the following is the most stable diazonium salt?

A) $C_6H_5CH_2N_2^+X^-$ B) $CH_3N_2^+X^-$ C) $CH_3CH_2N_2^+X^-$ D) $C_6H_5N_2^+X^-$

52. Electronic configuration of only one P block element is exceptional. One molecule of that element consists of how many atoms of it?

A) One

B) Two

C) Three

D) Four

53. The correct IUPAC name of $[CO(NH_3)_3(NO_2)_3]$

A) Triammine trinitrito – N cobalt (III)

B) Triammine trinitrito – N cobalt (II)

C) Triammine cobalt (III) nitrite

D) Triammine trinitrito – N cobaltate (III)

54. If M, W and V represent molar mass of solute, mass of solute and volume of solution in litres respectively, which among following equations is true?

A) $\pi = \frac{MWR}{TV}$ B) $\pi = \frac{TMR}{WV}$ C) $\pi = \frac{TWR}{VM}$ D) $\pi = \frac{TRV}{WM}$

55. Replacement of diazonium group by fluorine is known as

A) Gattermann reaction

B) Sandmeyer reaction

C) Balz-Schiemann reaction

D) Etard reaction

56. For which among the following reactions, change in entropy is less than zero?

A) Sublimation of Iodine

B) Dissociation of Hydrogen

C) Formation of water

D) Thermal decomposition of Calcium Carbonate

57. $[Cr(NH_3)_6][Cr(SCN)_6]$ and $[Cr(NH_3)_2(SCN)_4][Cr(NH_3)_4(SCN)_2]$ are the examples of what type of isomerism?

A) Ionisation isomerism

B) Linkage isomerism

C) Coordination isomerism

D) Solvate isomerism

58.	For the reaction $O_{3(g)} + O_{(g)} \rightarrow 2O_{2(g)}$,	if the rate law expression is,	rate = $K[O_3]$ [O] the
	molecularity and order of the reaction are re	spectively	

- A) 2 and 2
- B) 2 and 1.33
- C) 2 and 1
- D) 1 and 2

59.
$$R - C \equiv N + 2$$
 (H) $\xrightarrow{\text{(i) SnC}l_2/\text{dil HC}l}$ RCHO + NH₄C l this reaction is known as

- A) Etard reaction
- B) Stephen reaction
- C) Hell-Vohlard-Zelinsky reaction
- D) Balz-Schiemann reaction
- 60. Select a ferromagnetic material from the followings.
 - A) Dioxygen

B) Chromium (IV) oxide

C) Benzene

- D) Dihydrogen monoxide
- 61. What is the volume of water consumed during acid hydrolysis of 1.368 Kg of sucrose?

(Given – molar masses of sucrose = 342, water = 18, density of water = 1 g/cm^3)

- A) 0.072 dm^3
- B) 0.720 dm^3
- C) $0.18 \, \text{dm}^3$
- D) $0.018 \, \text{dm}^3$
- 62. The process in which metal surface is made inactive is called
 - A) Passivation
- B) Galvanizing
- C) Corrosion
- D) Pickling
- 63. Which among the following group 15 element forms most stable pentavalent compound?
 - A) Phosphorus
- B) Antimony
- C) Bismuth
- D) Arsenic
- 64. Which among the following functional groups has been given the highest priority while assigning R-S configuration?
 - $A) C_6 H_5$
- B) CN
- $C) C_2H_5$
- D) CH₃

-15-

65.	Given $R = 8.314$ JK (molar mass = 30) at 30		do	ne during combu	ustion of 0.090 kg of ethane
	(moral mass = 30) at 30 A) -18.7 kJ	B) 18.7 kJ	C)	6.234 kJ	D) – 6 234 kJ
66.	,	,			the oxidation state of chromium
	changes by				
	A) 2	B) 3	C)	4	D) 5
67.	Diethyl amine when tre	eated with nitrous acid	d yie	elds	
	A) Diethyl ammoniur	m nitrite	B)	Ethyl alcohol	
	C) N-nitroso diethyl a	amine	D)	Triethyl ammoniu	ım nitrite
68.	What is the most abund	lant element on earth	?		
	A) Hydrogen	B) Nitrogen	C)	Oxygen	D) Silicon
69.	The overall reaction tak electrode is	ing place at anode dur	ing	electrolysis of fuse	d sodium chloride using suitable
	A) Oxidation of chlor	ride	B)	Reduction of sodi	ium ions
	C) Reduction of chlor	rine	D)	Oxidation of sodi	um atoms
70.	The only radioactive el	ement among the lant	than	oids is	
	A) Gadolinium	B) Holmium	C)	Promethium	D) Neodynium
71.	Identify a metalloid from	m the following list o	f ele	ements.	
	A) Carbon	B) Neon	C)	Sodium	D) Tellurium
72.	What is the chemical co	omposition of Nicol's	pri	sm?	
	A) Al_2O_3	B) CaSO ₄	C)	CaCO ₃	D) Na ₃ AlF ₆
73.	Identify the heteropoly	mer from the list give	n be	elow.	
	A) Polythene	B) Nylon-6	C)	Teflon	D) Nylon-6, 6
74.	What is the basicity of	orthophosphorus acid	1?		
	A) One	B) Two	C)	Three	D) Four

75.	The correct or	der of reactivity of aldehy	ydes and ketones toward	s hydrogen cyanide is			
	A) CH ₃ COC	CH ₃ ⟩CH ₃ CHO⟩HCHO	B) CH ₃ COCH ₃ ⟩l	HCHO⟩CH ₃ CHO			
	C) CH ₃ CHC	O)CH ₃ COCH ₃)HCHO	D) HCHO\CH3C	CHO)CH ₃ COCH ₃			
76.	Which among	the following is a feature	e of adiabatic expansion	?			
	A) $\Delta V < 0$	B) $\Delta U < 0$	C) $\Delta U > 0$	D) $\Delta T = 0$			
77.	Molarity is def	fined as					
	A) the numb	er of moles of solute diss	solved in one dm ³ of the	solution			
	B) the numb	er of moles of solute diss	solved in 1 kg of solvent				
	C) the numb	er of moles of solute diss	solved in 1 dm ³ of the so	lvent			
	D) the numb	er of moles of solute diss	solved in 100 ml of the so	olvent			
78.	•	ssible number of monohyo e methyl group as a branc	•	drocarbon consisting of five carbon			
	A) 2	B) 3	C) 4	D) 5			
79.		ount of work done when to 00 K against a pressure of	•	compressed from a volume of 1 m ²			
	A) 99 kJ	B) - 99 kJ	C) 114.9 kJ	D) – 114.9 kJ			
80.	Which among t	the following alloys is used	d in making instruments fo	or electrical measurements?			
	A) Stainless	steel B) Manganin	C) Spiegeleisen	D) Duralumin			
81.	Which of the f	following proteins is glob	ular ?				
	A) Collagen	B) Albumin	C) Myosin	D) Fibroin			
82.	A mixture of b	enzaldehyde and formal	dehyde when treated wit	th 50% NaOH yields			
	A) Sodium b	enzoate and sodium form	nate				
	B) Sodium f	formate and benzyl alcohol	ol				
	C) Sodium b	enzoate and methyl alcol	hol				
	D) Benzyl al	cohol and methyl alcoho	1				
	SPACE FOR POLICH WORK						

83.	Which among the follo	owing solutions is N	OT used in determinat	ion of the cell constant?			
	A) $10^{-2} \text{ M KC} l$	B) 10 ⁻¹ M KC <i>l</i>	C) 1 M KC <i>l</i>	D) Saturated KCl			
84.	Which halogen forms a	an oxyacid that contai	ns the halogen atom in	tripositive oxidation state?			
	A) Fluorine	B) Chlorine	C) Bromine	D) Iodine			
85.	Name the metal that is furnace and heating th		-	sloping hearth of a reverberatory			
	A) Mercury	B) Galium	C) Zirconium	D) Copper			
86.	Which among the follo	owing is a tranquilize	er?				
	A) Aspirin	B) Valium	C) Penicillin	D) Sulphanilamide			
87.	Chlorination of ethane	e is carried out in pres	sence of				
	A) anhydrous AlBr ₃		B) mercuric chlorid	le			
	C) ultraviolet light		D) zinc chloride				
88.	Identify a 'Chemical tv	win' among the follo	wings.				
	A) Zr-Ta	B) Nb-Tc	C) Hf-Re	D) Nb-Ta			
89.	The relationship between	een rate constant and	half life period of zero	o order reaction is given by			
	A) $t_{\frac{1}{2}} = [A]_0 2k$	B) $t_{\frac{1}{2}} = \frac{0.693}{k}$	C) $t_{\frac{1}{2}} = \frac{[A]_0}{2k}$	D) $t_{\frac{1}{2}} = \frac{2[A]_0}{k}$			
90.	Which polymer among	g the following polyn	mers does NOT soften	on heating?			
	A) Bakelite	B) Polythene	C) Polystyrene	D) PVC			
91.	Van't Hoff factor of ce of K_3 [Fe(CN) ₆].	ntimolal solution of I	K_3 [Fe(CN) ₆] is 3.333.	Calculate the percent dissociation			
	A) 33.33	B) 0.78	C) 78	D) 23.33			
92.	Which of the following	g compounds is mos	t acidic in nature ?				
	A) 4-Chlorobutanoic	e acid	B) 3-Chlorobutano	ic acid			
	C) 2-Chlorobutanoic	e acid	D) Butanoic acid				
	SDACE FOR DOUGH WORK						

11 -18-

93.	How is ore of aluminiu	m concentrated?					
	A) roasting		B)	leaching			
	C) froth floatation		D)	using Wilfley tab	le		
94.	Which of the following	g compounds has hig	hest	boiling point?			
	A) Propan-1-ol	B) n-Butane	C)	Chloroethane	D) Propanal		
95.	Which metal among th	e followings has the	high	est packing efficie	ency?		
	A) Iron	B) Tungsten	C)	Aluminium	D) Polonium		
96.	What oxoacid of sulph	ur contains S-S bond	l in it	ts structure?			
	A) Disulphurous acid	d	B)	B) Disulphuric acid			
	C) Perdisulphuric aci	id	D)	D) Hydrosulphurous acid			
97.	Which among the follo	wing detergents is n	on-io	onic in character?			
	A) Sodiumlauryl sulp	ohate	B)	Pentaerythrityl st	earate		
	C) Cetyltrimethyl am	monium chloride	D)	Sodium n-dodec	yl benzene sulphonate		
98.	Reaction of which amo	ng the following ethe	ers w	ith HI in cold leads	to formation of methyl alcohol		
	A) ethyl methyl ether	•	B)	methyl propyl eth	ner		
	C) isopropyl methyl	ether	D)	tert-butyl methyl	ether		
99.	During conversion of g	glucose into glucose	cyan	ohydrin, what fun	ctional group/atom of glucose is		
	replaced?						
	A) hydrogen		B)	aldehydic group			
	C) primary alcoholic	group	D)	secondary alcoho	olic group		
100.	Half life period of a first	t order reaction, $A \rightarrow$	proc	luct is 6.93 hour. W	That is the value of rate constant ?		
	A) 1.596 h ⁻¹	B) 0.1 h^{-1}	C)	$4.802 \ h^{-1}$	D) 10 h ⁻¹		

-19-BIOLOGY

101.	In the first step of Mon			t, Mendel selected	pea plants which were		
	A) pure tall as male a	•					
	B) pure tall as female and pure dwarf as male						
	C) heterozygous tall	_					
	D) heterozygous tall	as female and pure dy	warf	as male			
102.	In Griffith's experime mixed with heat killed		R-t	ype to S-type of <u>I</u>	Diplococcus Pneumoniae when		
	A) mutation	B) transduction	C)	transfection	D) transformation		
103.	Semidwarf rice variety	IR-8 was developed	in				
	A) Taiwan	B) Phillipines	C)	India	D) China		
104.	Which one of the follo	wing is a non-endosp	erm	ic seed?			
	A) sunflower	B) coconut	C)	ground nut	D) wheat		
105.	Which one of the follo	wing is NOT a myco	herb	picide?			
	A) Phytophthora pali	<u>mivora</u>	B)	Xanthomonas sp.			
	C) Alternaria crassa		D)	Fusarium sp.			
106.	During anaerobic respiratory TPP, the cofactor requirements		of p	oyruvate into aceta	ldehyde, along with co-enzyme		
	A) Mg^{++}	B) Mn ⁺⁺	C)	Fe ⁺⁺	D) Zn ⁺⁺		
107.	An international treaty	known as Montreal F	roto	ocol was signed to	control emission of		
	A) UV rays	B) Ozone	C)	CFC	D) Oxygen		
108.	Chloroplasts in higher	plants are	sh	naped.			
	A) kidney	B) lens	C)	bean	D) dome		
109.	Pollengrain develops f	rom of a	nthe	er.			
	A) epidermis	B) endothecium	C)	tapetum	D) sporogenous tissue		
110.	In processing of eukary	otic hn RNA, during	prote	ein synthesis tailing	ginvolves of RNA.		
	A) Addition of aden	ylate residues at 3' en	ıd				
	B) Addition of meth	yl guanosine triphosp	hate	e at 3' end			
	C) Addition of meth	yl guanosine triphosp	hate	e at 5' end			
	D) Removal of intro	ns					
111.	In a cross between red k the phenotypic ratio in			ed varieties of whea	at showing polygenic inheritance		
	A) 1:6:15:20:15	5:6:1	B)	1:4:6:4:1			
	C) 1:2:1		D)	2:1			
112.	In angiosperms during	development of emb	ryo t	the suspensor cells	develop from		
	A) oospore	B) integument	C)	endosperm	D) cotyledon		

-20-

113.	Manganese, calcium ar	nd chloride ions prese	ent in PS-I	I play an imp	oortant role in
	A) Absorption of ligh	nt	B) CO ₂	assimilation	
	C) Photolysis of water	er	D) ATP	synthesis	
114.	Which process does the	e following equation	represent	?	
	$C_6H_{12}O_6 + 2NAD +$	$2 \text{ ADP} + 2\text{Pi} \rightarrow 2 \text{ C}$	$H_3 - CO$	- COOH +	$2 \text{ NADH}_2 + 2 \text{ ATP}$
	A) complete glycolys	is	B) comp	plete aerobic	respiration
	C) complete anaerobi	c respiration	D) comp	olete ferment	ation
115.	The cloning vector M1	3 has genetic materia	1		
	A) ssRNA	B) dsRNA	C) ssDN	NA	D) dsDNA
116.	Earthworm is a				
	A) herbivore		B) secon	ndary consur	mer
	C) tertiary consumer		D) detriv	vore	
117.	To induce formation of	organs in a callus it i	s necessar	ry to provide	
	A) growth hormones	B) water	C) soil		D) antibiotics
118.	Anemophily is NOT of	oserved in			
	A) Maize	B) Jowar	C) Suga	rcane	D) Salvia
119.	In an ecosystem, the bio	otic components herb	ivorous a	re	
	A) photosynthetic	B) chemosynthetic	C) macr	o consumers	D) micro consumers
120.	The visible portion of la	ight spectrum useful i	in photosy	nthesis is ref	ferred to as
	A) RFLP	B) PAR	C) VAN	Л	D) VNTR
121.	The microbe Pseudomo	onas denitrificans pro	duces Vit	amin	
	A) K	B) D	C) B ₂		D) B ₁₂
122.	If there are 1280 micro there in its each pollen		lar anther,	how many i	microspore mother cells will be
	A) 80	B) 160	C) 240		D) 1280
123.	Which one of the follow	wing plants DOES N	OT help i	n vegetative	propagation by leaves?
	A) Begonia	B) Kalanchoe	C) Bryo	phyllum	D) Oxalis
124.	Given below are some	reactions and the enz	ymes invo	olved.	
	Identify the CORRECT	Γ pairs.			
	I			II	
	1. Fructose 1,6 diphe	osphate \rightarrow 3 PGAL	+ DHAP	a. enolas	e
	2. Citrate \rightarrow Cis – a	conitate		b. thiokin	nase
	3. Succinyl Co. A –	→ succinate		c. aconita	ase
	4. $2 \text{ PGA} \rightarrow \text{PEPA}$			d. aldolas	se
	A) 1-d, 2-c, 3-b, 4-a		B) 1-a, 2	2-b, 3-c, 4-d	
	C) 1-b, 2-a, 3-d, 4-c		D) 1-c, 2	2-d, 3-a, 4-b	

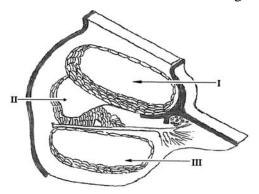
125.	Human skin colour is a	n example of		
	A) Intragenic interact	ion	B) Interallelic interac	ction
	C) Quantitative inher	itance	D) Pleiotropy	
126.	During DNA replication	n, the addition of nuc	cleotides on the laggin	g strand occurs
	A) towards the replic	ating fork	B) at a faster rate that	an leading strand
	C) continuously		D) discontinuously	
127.	The technique of produculture is called	icing large number of	f genetically similar p	lants within short time by tissue
	A) Organogenesis		B) Somatic hybridiz	ation
	C) Micropropagation		D) Protoplast culture	2
128.	How many sense codor	ns code for 20 knowr	n essential amino acid	s?
	A) 61	B) 62	C) 63	D) 64
129.	Which one of the follow	wing is NOT a natura	al method of vegetative	e propagation ?
	A) runner	B) foliar buds	C) stem tuber	D) grafting
130.	Transposons are sequen	nces of		
	A) DNA	B) mRNA	C) rRNA	D) tRNA
131.	A 340 Å long segmen number of guanine nitr			genous bases, what will be the
	A) 10	B) 40	C) 80	D) 160
132.	The final electron accep	ptor during ETS in re	spiration is	
	A) Hydrogen	B) Oxygen	C) FMN	D) Ubiquinone
133.	The time taken from the seconds.	fixation of CO ₂ to the	e formation of one gluc	ose molecule is about
	A) 20	B) 40	C) 60	D) 90
134.	The secondary metabol	lite obtained from Ca	tharanthus roseus is	
	A) vincristin	B) anthocyanin	C) menthol	D) nicotine
135.	Large stout, nocturnal f adaptations for	lowers producing cop	oious nectar and emittin	ng fermenting fruity odor, are the
	A) Entomophily	B) Ornithophily	C) Chiropterophily	D) Anemophily
136.	During Biogas product	ion acetic acid is tran	sformed into the final	product by the enzymes of
	A) Clostridium	B) Pseudomonas	C) Penicillium	D) Methanobacillus
137.	The gymnospermic ende	osperm differs from ar	n angiospermic endosp	erm because in gymnosperms it is
	A) haploid and develo	oped from female gar	netophyte	
	B) diploid and develo	pped from female gan	netophyte	
	C) triploid and develo	•		
	D) triploid and develo	oped before fertilization	on	

-22-

138.	Wha	at is NOT true abou	t em	asculation of	f a flo	we	r while performin	g an artificial cross?
	A)	It is removal of an	ther	s from flower	r			
	B)	It is done before an	nthe	sis				
	C)	It is to avoid self p	ollir	nation				
	D)	It is done in flowe	rs of	plants select	ted as	ma	ale parent	
139.	Pusa	a shubhra is a varie	ty of	Î				
	A)	cauliflower	B)	chilli		C)	wheat	D) cabbage
140.	Whi	ch of the following	is c	orrect pair of	pyri	mid	line bases ?	
	A)	Adenine & Thymi	ne			B)	Adenine & Guan	ine
	C)	Thymine & Cytos	ine			D)	Guanine & Cytos	sine
141.	In th	e nomenclature of	enzy	me restrictio	n enc	don	uclease the Roma	n numeral indicates
	A)	number of times it	is u	sed		B)	the order of disco	very from source
	C)	number of cuts on	DN	IΑ		D)	number of recom	binants formed
142.	Env	ironmental biotic fa	ictoi	that helps in	polli	nati	ion is	
	A)	air	B)	water		C)	wind	D) insects
143.	How	w many types of gar	nete	es will be pro	duce	d by	y an individual ha	ving genotype AaBbcc?
	A)	four	B)	three		C)	two	D) one
144.	Self	pollination which i	nvo	lves two diffe	erent	flo	wers of the same p	plant, is called
	A)	autogamy	B)	geitonogam	y	C)	xenogamy	D) hybridization
145.	The	initial step in prepa	rati	on of beer is				
	A)	malting	B)	carboxylatio	n	C)	clarification	D) distillation
146.	A de	esirable change in g	geno	type of an or	ganis	m i	s obtained by	
	A)	DNA replication				B)	protein synthesis	
	C)	rDNA technology				D)	m-RNA formatio	n
147.	Con	sidering mode of as	exua	al reproductio	n, ma	atch	the Column I with	II and select the correct option:
		I			I	[
	a.	Yeast		i.	fragn	nen	tation	
	b.	Penicillium		ii.	zoosj	ore	es	
	c.	Filamentous algae		iii.	budd	ing		
	d.	Chlamydomonas		iv.	conic	lia		
	A)	a-iii, b-iv, c-i, d-ii				B)	a-ii, b-iii, c-i, d-iv	,
	C)	a-iv, b-iii, c-ii, d-i				D)	a-iii, b-ii, c-i, d-iv	,
148.		much of the energ	y rel	eased during	aerol	bic 1	respiration is appr	oximately conserved in the form
	A)	20%	B)	40%		C)	60%	D) 100%
149.	The	deflection of pitch	ang	le between tv	vo su	cce	ssive steps (rungs) of DNA is
	A)	72°	B)	54°		C)	36°	D) 18°

				-23-	-		11
150.	Which one of the	e foll	lowing is a CAM pla	ınt ?			
	A) Maize		B) Kalanchoe	\mathbf{C}	Sugarcane	D) Jowar	
151.	One of the follow	ving	cells secretes a horn	none			
	A) Cells of Ley	dig		B)	Cells of Sertoli		
	C) Primary spe	rma	tocyte	D)) Secondary sperm	natocyte	
152.	Find the odd one	out,	with respect to X-li	nkage	•		
	A) Haemophili	a	B) Myopia	\mathbf{C}	Nephritis 1	D) Night blindness	
153.	The first fossil of	f Aus	<i>stralopithecus</i> was di	scove	red in		
	A) Olduvai Go	rge,	Tanzania	B)	Fayum deposits	of Egypt	
	C) Siwalik hills	s in l	India	D)	Taung in South A	Africa	
154.	Which of the foll	lowi	ng options are COR	RECT	7?		
	1. Heroin	_	Stimulant				
	2. Marijuana	_	Cardiovascular				
	3. Cocaine	_	Hallucinations				
	4. Morphine	_	Sedative				
	A) 1, 2 and 3		B) 1, 3 and 4	C)	2, 3 and 4	D) 1, 2 and 4	
155.	Serotonin and Me	elato	onin are hormones, se	ecrete	d by		
	A) Pancreas		B) Pineal body	\mathbf{C}	Pituitary gland	D) Thymus	
156.	The characters su are observed in _		-	snout	, strong and stout f	forelimbs, well developed c	laws
	A) Arboreal		B) Aerial	\mathbf{C}	Cursorial	D) Fossorial	
157.	Deposition of		in the joints cause	s gou	t.		
	A) Urea		B) Uric acid	\mathbf{C}	Guanine	D) Ammonia	
158.	The glycoprotein	ı, fer	tilizin is secreted by				
	A) Ovum		B) Ovary	\mathbf{C}	Sperm	D) Testis	
159.	In the given diag	ram	I and II indicate				
		minimus Comme	·I				

- A) Chromomere and chromonemata
- B) Centromere and secondary constriction
- C) Secondary constriction and satellite
- D) Telomere and satellite


11 -24-

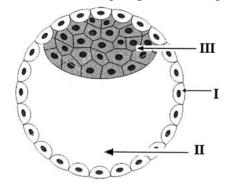
160. Find the CORRECT match:

	Column A	Column B		Column C		
	i. Mackeral	Rastrelliger		Freshwater fish		
	ii. Honey bee	Apis		Wax		
	iii. Mirgala	Tacchardia		Marine waterfish		
	iv. Silkworm	Bombyx		Mulberry silk		
	A) ii and iv	B) i and ii	C) iv only	D)	i and iii
161.	A Red list of endangere	ed species is maintair	ned	by		
	A) CSIR	B) IUCN	C) NEERI	D)	WLS
162.	The Human Genome P	roject (HGP) was ini	tiat	ed in		
	A) 1988	B) 1990	C) 1992	D)	1994
163.	Ectoderm gives rise to					
	A) cornea, heart, bron	nchi, dentine				
	B) adrenal cortex, tor	ngue, liver, retina				
	C) lungs, adrenal med	dulla, dermis, thyroid	l			
	D) enamel of teeth, na	ails, adrenal medulla,	, ha	ir		
164.	Helper T – cells : Lym	phokines as				
	Killer T – cells :	-				
	A) Interferons	B) Lysozymes	C) Perforins	D)	Prostaglandins
165.	Epicanthal skin fold an	d simian crease are ch				
	A) Down's syndrome	e) Klinefelter's sync		e
	C) Thalassemia		D) Turner's syndron	ne	
166.	Following are all breed					
	A) Jersey	B) Nagpuri	C) Sahiwal	D)	Sindhi
167.	More than 95 % of tran	•	_			_
	A) Rabbits	B) Mice	C) Fish	D)	Cows
168.	Pick the ODD homolog		_			
	A) Bartholin's Gland	-		Clitoris – Penis		
	C) Mons pubis – Gla	•	D) Labia majora – So	crotu	ım
169.	Which is NOT the fund	• •	ъ.	\ D :	CI	• 1
	A) Transport R.B.C.s) Drain excess tissu		
170	C) Transport lympho	•) Transport absorb		
1/0.	A cuckoo laying eggs i	_			amp	le of
	A) Adelphoparasitism	1) Broodparasitism		
171	C) Ectoparasitism The rentiles, like dines	aura wara daminanti) Hyperparasitism		
1/1.	The reptiles, like dinos. A) Cretaceous			-	D)	Triassic

172. Select the CORRECT identification group of labelled parts I, II, III

- A) I Scala vestibuli, II Scala media, III Scala tympani
- B) I Scala vestibuli, II Scala tympani, III Scala media
- C) I Scala tympani, II Scala media, III Scala vestibuli
- D) I Scala media, II Scala tympani, III Scala media
- 173. The Transgenic animals are generally produced for all of the following needs EXCEPT
 - A) Testing of chemical safety
 - B) Testing of vaccine safety
 - C) Stimulation of pathogenicity
 - D) Production of pharmacologically important proteins

174. Match the following:


- i. Mercury
- a. Low blood pressure, blindness
- ii. Lead
- b. Hyperkeratosis, Liver cirrhosis
- iii. Arsenic
- c. Bone deformation, testicular atrophy
- iv. Cadmium
- d. Abdominal pain, haemolysis
- e. Anaemia, convulsions
- A) i-e, ii-d, iii-c, iv-b

B) i-d, ii-e, iii-b, iv-c

C) i-c, ii-b, iii-d, iv-a

D) i-b, ii-c, iii-d, iv-e

175. Choose the CORRECT group of labellings

- A) I Trophoblast, II Archenteron, III Micromeres
- B) I Trophoblast, II Blastocoel, III Megameres
- C) I Trophoblast, II Archenteron, III Inner mass cells
- D) I Trophoblast, II Blastocoel, III Inner mass cells

-26-

176.	All	of the following and	mals are	ureotelic E	XCE	EPT		
	A)	Frog	B) Sna	ke	C)	Turtle	D)	Toad
177.	The	study of blood vess	sels is ter	med as				
	A)	Angiology	B) Care	diology	C)	Haematology	D)	Histology
178.	Plas	ma cells are derive	d from					
	A)	Cytotoxic T – cell	S		B)	Helper T – cells		
	C)	Memory B – cells			D)	Memory T – cell	S	
179.	Dar	win's theory of Evo	olution C	CANNOT ex	kplai	n		
	A)	Arrival of fittest			B)	Natural selection		
	C)	Prodigality of prod	duction		D)	Struggle for exist	tence	e
180.	Dur	ing ovulation, the o	vary rele	ases				
	A)	Oogonia	B) Oot	id	C)	Primary oocyte	D)	Secondary oocyte
181.	Juxt	a glomerular cells o	of kidney	secrete hor	mon	e		
	A)	Angiotensinogen			B)	Angiotensin II		
	C)	Coherin			D)	Renin		
182.	The	marine fish among	the follo	wing varieti	ies is	S		
	A)	Stromateus	B) Lab	eo	C)	Cirrhina	D)	Catla
183.	Whi	ch of the following	animal	was selected	l by l	Morgan for studyi	ng li	nkage ?
	A)	Apis indica			B)	Agrobacterium ti	umaj	faciens
	C)	Drosophila melan	ogaster		D)	E. Coli		
184.	The	increase in blood f	low to he	art stimulate	es se	cretion of		
	A)	Renin			B)	Oxytocin		
	C)	Antidiuretic horm	one		D)	Atrial natriuretic	facto	or
185.	Hea	viness with severe	chest pai	n which ma	y dis	appear with rest in	ndica	ates
	A)	Angina pectoris	B) Ath	erosclerosis	C)	Arteriosclerosis	D)	Hyperthyroidism
186.	The	co-ordinator between	en Nerv	ous and end	ocrii	ne system is		
	A)	Thalamus	B) Hyp	othalamus	C)	Epithalamus	D)	Colliculus
187.	Mat	ch the pairs of disea	ases and	pathogens:				
		I			II			
	1.	Malaria		a. Wucher	eria	bancrofti		
	2.	Filariasis		b. Helmint	h			
	3.	Typhoid		c. Plasmod	lium	falciparum		
	4.	Schistosomiasis		d. Salmone	ella t	yphi		
	A)	1-c, 2-b, 3-a, 4-d			B)	1-d, 2-a, 3-b, 4-c		
	C)	1-a, 2-b, 3-c, 4-d			D)	1-c, 2-a, 3-d, 4-b		
188.	The	clot formation can	be preve	nted by trea	tmei	nt with	in ge	ene therapy.
	A)	DNase			B)	Recombinant vac	ccine	;
	C)	TPA			D)	TGF-B		

189.	Select the COR			
		Cercopithecoidea	B) Lemur – Prosin	
	ŕ	d Monkey – Hominoidea	,	ropoidea
190.		ic Factor (ANF) decreases		
	A) Blood pres		B) Secretion of re-	nin
	C) Na ⁺ excret		D) Vasodilation	
191.		at the end of cleavage is _		
	A) 14	B) 16	C) 18	D) 20
192.	Select the COR	-		
	•	Radiation – Darwin's Finc		
	·	g Link – Sewall – Wright	effect	
		ift – Peppered moth		
	ŕ	Melanism – Archeopteryx		
193.	• •	s of sympathetic ganglia a	•	
	A) 10	B) 12	C) 22	D) 31
194.		e produced by Edward Jer	-	_
	A) Hepatitis	B) Influenza	C) Chicken pox	D) Small pox
195.	Which are the p	hagocytic cells from giver	n diagram ?	
	I	п ш и	v	
	A) I and V	B) I and III	C) I and IV	D) I and II
196.	Forceful muscu	lar contractions of uterine	wall is involved in	
	A) Implantation	on B) Lactation	C) Micturition	D) Parturition
197.	In mechanism o	of hormone action, which of	of the following is NO	T a second messenger?
	A) Cyclic AM	IP B) IP ₃	C) Ca ⁺⁺	D) Mg ⁺⁺
198.	One of the follo	wing pair of animals is an	example of commensa	alism
	A) Sacculina	– crab	B) Plasmodium –	Anopheles
	C) Golden Jac	ckal – Tiger	D) Ascaris – Man	
199.	What is "After b	oirth" referred to?		
	A) Amniotic f	luid passing out		
	B) Expulsion	of baby		
		of placenta, umbilical core	d and foetal membrane	2
	D) Secretion of	of hormone relaxin		
200.		cranial nerves control eye		
	· •	lucens, Pathetic	B) Optic, Oculom	
	C) Oculomoto	or, Abducens, Auditory	D) Oculomotor, A	bducens, Trochlear

LOGARITHMS

	0	1	2	3	4	5	6	7	8	9	1	2	3	4	5	6	7	8	9
10	0000	0043	0086	0128	0170		_				5	9	13	17	21	26	30	34	38
	0000	00.0	0000	0.20	01.0	0212	0253	0294	0334	0374	4	8	12	16	20	24	28	32	36
11	0414	0453	0492	0531	0569		0200	0201	0001		4	8	12	16	20	23	27	31	35
''	0414	0400	0402	0001	0000	0607	0645	0682	0719	0755	4	7	11	15	18	22	26	29	33
12	0792	0828	0864	0899	0934	0007	0040	0002	07 13	0700	3	7	11	14	18	21	25	28	32
'*	0/32	0020	0004	0033	0334	0969	1004	1038	1072	1106	3	7	10	14	17	20	24	27	31
13	1139	1173	1206	1239	1271	0909	1004	1000	1072	1100	3	6	10	13	16	19	23	26	29
13	1139	11/3	1200	1239	12/1	1202	1225	1367	1399	1430			10	0.000	16	0.000	22		
14	1461	1402	1523	1553	1501	1303	1335	1307	1399	1430	3	6	200	13	15	19	22	25	29
14	1461	1492	1523	1555	1584	1011	1011	4070	1700	4700	Ove		9	12		19	74525	25	28
45	4704	4700	4040	4047	4075	1614	1644	1673	1703	1732	3	6	9	12	14	17	20	23	26
15	1761	1790	1818	1847	1875	4000		1050	4007		3	6	9	11	14	17	20	23	26
						1903	1931	1959	1987	2014	3	6	8	11	14	17	19	22	25
16	2041	2068	2095	2122	2148	0.000	10/5/07/07	10000000	778383E783	100000000	3	6	8	11	14	16	19	22	24
						2175	2201	2227	2253	2279	3	5	8	10	13	16	18	21	23
17	2304	2330	2355	2380	2405						3	5	8	10	13	15	18	20	23
						2430	2455	2480	2504	2529	3	5	8	10	12	15	17	20	22
18	2553	2577	2601	2625	2648						2	5	7	9	12	14	17	19	21
						2672	2695	2718	2742	2765	2	4	7	9	11	14	16	18	21
19	2788	2810	2833	2856	2878						2	4	7	9	11	13	16	18	20
						2900	2923	2945	2967	2989	2	4	6	8	11	13	15	17	19
20	3010	3032	3054	3075	3096	3118	3139	3160	3181	3201	2	4	6	8	11	13	15	17	19
21	3222	3243	3263	3284	3304	3324	3345	3365	3385	3404	2	4	6	8	10	12	14	16	18
22	3424	3444	3464	3483	3502	3522	3541	3560	3579	3598	2	4	6	8	10	12	14	15	17
23	3617	3636	3655	3674	3692	3711	3729	3747	3766	3784	2	4	6	7	9	11	13	15	17
24	3802	3820	3838	3856	3874	3892	3909	3927	3945	3962	2	4	5	7	9	11	12	14	16
25	3979	3997	4014	4031	4048	4065	4082	4099	4116	4133	2	3	5	7	9	10	12	14	15
26	4150	4166	4183	4200	4216	4232	4249	4265	4281	4298	2	3	5	7	8	10	11	14	15
27	4314	4330	4346	4362	4378	4393	4409	4425	4440	4456	2	3	5	6	8	9	11	13	14
28	4472	4487	4502	4518	4533	4548	4564	4579	4594	4609	2	3	5	6	8	9	11	12	14
29	4624	4639	4654	4669	4683	4698	4713	4728	4742	4757	1	3	4	6	7	9	10	12	13
30	4771	4786	4800	4814	4829	4843	4857	4871	4886	4900	1	3	4	6	7	9	10	11	13
31	4914	4928	4942	4955	4969	4983	4997	5011	5024	5038	1	3	4	6	7	8	10	11	12
32	5051	5065	5079	5092	5105	5119	5132	5145	5159	5172	1	3	4	5	7	8	9	11	12
33	5185	5198	5211	5224	5237	5250	5263	5276	5289	5302	1	3	4	5	6	8	9	10	12
34	5315	5328	5340	5353	5366	5378	5391	5403	5416	5428	1	3	4	5	6	8	9	10	11
35	5441	5453	5465	5478	5490	5502	5514	5527	5539	5551	1	2	4	5	6	7	9	10	11
36	5563	5575	5587	5599	5611	5623	5635	5647	5658	5670	1	2	4	5	6	7	8	10	11
37	5682	5694	5705	5717	5729	5740	5752	5763	5775	5786	1	2	3	5	6	7	8	9	10
38	5798	5809	5821	5832	5843	5855	5866	5877	5888	5899	1	2	3	5	6	7	8	9	10
			Various		Contract to the contract	V 100000000000000	5977	200000000000000000000000000000000000000	0.550055600	6010			3	4	5	7	8		10
39	5911	5922	5933	5944	5955	5966	5500000	5988	5999	A Committee	1	2		0.82			250	9	12 Table 1
40	6021	6031	6042	6053	6064	6075	6085	6096	6107	6117	1	2	3	4	5	6	8	9	10
41	6128	6138	6149	6160	6170	6180	6191	6201	6212	6222	!	2	3	4	5	6	7	8	9
42	6232	6243	6253	6263	6274	6284	6294	6304	6314	6325	1	2	3	4	5	6	7	8	9
43	6335	6345	6355	6365	6375	6385	6395	6405	6415	6425	1	2	3	4	5	6	7	8	9
44	6435	6444	6454	6464	6474	6484	6493	6503	6513	6522	1	2	3	4	5	6	7	8	9
45	6532	6542	6551	6561	6571	6580	6590	6599	6609	6618	1	2	3	4	5	6	7	8	9
46	6628	6637	6646	6656	6665	6675	6684	6693	6702	6712	1	2	3	4	5	6	7	7	8
47	6721	6730	6739	6749	6758	6767	6776	6785	6794	6803	1	2	3	4	5	5	6	7	8
48	6812	6821	6830	6839	6848	6857	6866	6875	6884	6893	1	2	3	4	4	5	6	7	8
49	6902	6911	6920	6928	6937	6946	6955	6964	6972	6981	1	2	3	4	4	5	6	7	8

11 -30-

LOGARITHMS

	0	1	2	3	4	5	6	7	8	9	1	2	3	4	5	6	7	8	9
50	6990	6998	7007	7016	7024	7033	7042	7050	7059	7067	1	2	3	3	4	5	6	7	8
51	7076	7084	7093	7101	7110	7118	7126	7135	7143	7152	1	2	3	3	4	5	6	7	8
52	7160	7168	7177	7185	7193	7202	7210	7218	7226	7235	1	2	2	3	4	5	6	7	7
53	7243	7251	7259	7267	7275	7284	7292	7300	7308	7316	1	2	2	3	4	5	6	6	7
54	7324	7332	7340	7348	7356	7364	7372	7380	7388	7396	1	2	2	3	4	5	6	6	7
55	7404	7412	7419	7427	7435	7443	7451	7459	7466	7474	1	2	2	3	4	5	5	6	7
56	7482	7490	7497	7505	7513	7520	7528	7536	7543	7551	1	2	2	3	4	5	5	6	7
57	7559	7566	7574	7582	7589	7597	7604	7612	7619	7627	1	2	2	3	4	5	5	6	7
58	7634	7642	7649	7657	7664	7672	7679	7686	7694	7701	1	1	2	3	4	4	5	6	7
59	7709	7716	7723	7731	7738	7745	7752	7760	7767	7774	1	1	2	3	4	4	5	6	7
60	7782	7789	7796	7803	7810	7818	7825	7832	7839	7846	1	1	2	3	4	4	5	6	6
61	7853	7860	7868	7875	7882	7889	7896	7903	7910	7917	1	1	2	3	4	4	5	6	6
62	7924	7931	7938	7945	7952	7959	7966	7973	7980	7987	1	1	2	3	3	4	5	6	6
63	7993	8000	8007	8014	8021	8028	8035	8041	8048	8055	1	1	2	3	3	4	5	5	6
64	8062	8069	8075	8082	8089	8096	8102	8109	8116	8122	1	1	2	3	3	4	5	5	6
65	8129	8136	8142	8149	8156	8162	8169	8176	8182	8189	1	1	2	3	3	4	5	5	6
66	8195	8202	8209	8215	8222	8228	8235	8241	8248	8254	1	1	2	3	3	4	5	5	6
67	8261	8267	8274	8280	8287	8293	8299	8306	8312	8319	1	1	2	3	3	4	5	5	6
68	8325	8331	8338	8344	8351	8357	8363	8370	8376	8382	1	1	2	3	3	4	4	5	6
69	8388	8395	8401	8407	8414	8420	8426	8432	8439	8445	1	1	2	2	3	4	4	5	6
70	8451	8457	8463	8470	8476	8482	8488	8494	8500	8506	1	1	2	2	3	4	4	5	6
71	8513	8519	8525	8531	8537	8543	8549	8555	8561	8567	1	1	2	2	3	4	4	5	5
72	8573	8579	8585	8591	8597	8603	8609	8615	8621	8627	1	1	2	2	3	4	4	5	5
73	8633	8639	8645	8651	8657	8663	8669	8675	8681	8686	1	1	2	2	3	4	4	5	5
74	8692	8698	8704	8710	8716	8722	8727	8733	8739	8745	1	1	2	2	3	4	4	5	5
75	8751	8756	8762	8768	8774	8779	8785	8791	8797	8802	1	1	2	2	3	3	4	5	5
76	8808	8814	8820	8825	8831	8837	8842	8848	8854	8859	1	1	2	2	3	3	4	5	5
77	8865	8871	8876	8882	8887	8893	8899	8904	8910	8915	1	1	2	2	3	3	4	4	5
78	8921	8927	8932	8938	8943	8949	8954	8960	8965	8971	1	1	2	2	3	3	4	4	5
79	8976	8982	8987	8993	8998	9004	9009	9015	9020	9025	1	1	2	2	3	3	4	4	5
80	9031	9036	9042	9047	9053	9058	9063	9069	9074	9079	1	1	2	2	3	3	4	4	5
81	9085	9090	9096	9101	9106	9112	9117	9122	9128	9133	1	1	2	2	3	3	4	4	5
82	9138	9143	9149	9154	9159	9165	9170	9175	9180	9186	1	1	2	2	3	3	4	4	5
83	9191	9196	9201	9206	9212	9217	9222	9227	9232	9238	1	1	2	2	3	3	4	4	5
84	9243	9248	9253	9258	9263	9269	9274	9279	9284	9289	1	1	2	2	3	3	4	4	5
85	9294	9299	9304	9309	9315	9320	9325	9330	9335	9340	1	1	2	2	3	3	4	4	5
86	9345	9350	9355	9360	9365	9370	9375	9380	9385	9390	1	1	2	2	3	3	4	4	5
87	9395	9400	9405	9410	9415	9420	9425	9430	9435	9440	0	1	1	2	2	3	3	4	4
88	9445	9450	9455	9460	9465	9469	9474	9479	9484	9489	0	1	1	2	2	3	3	4	4
89	9494	9499	9504	9509	9513	9518	9523	9528	9533	9538	0	1	1	2	2	3	3	4	4
90	9542	9547	9552	9557	9562	9566	9571	9576	9581	9586	0	1	1	2	2	3	3	4	4
91	9590	9595	9600	9605	9609	9614	9619	9624	9628	9633	0	1	1	2	2	3	3	4	4
92	9638	9643	9647	9652	9657	9661	9666	9671	9675	9680	0	1	1	2	2	3	3	4	4
93	9685	9689	9694	9699	9703	9708	9713	9717	9722	9727	0	1	1	2	2	3	3	4	4
94	9731	9736	9741	9745	9750	9754	9759	9763	9768	9773	0	1	1	2	2	3	3	4	4
95	9777	9782	9786	9791	9795	9800	9805	9809	9814	9818	0	1	1	2	2	3	3	4	4
96	9823	9827	9832	9836	9841	9845	9850	9854	9859	9863	0	1	1	2	2	3	3	4	4
97	9868	9872	9877	9881	9886	9890	9894	9899	9903	9908	0	1	1	2	2	3	3	4	4
98	9912	9917	9921	9926	9930	9934	9939	9943	9948	9952	0	1	1	2	2	3	3	4	4
99	9956	9961	9965	9969	9974	9978	9983	9987	9991	9996	0	1	1	2	2	3	3	3	4

ANTILOGARITHMS

	0	1	2	3	4	5	6	7	8	9	1	2	3	4	5	6	7	8	9
0.00	1000	1002	1005	1007	1009	1012	1014	1016	1019	1021	0	0	1	1	1	1	2	2	2
0.01	1023	1026	1028	1030	1033	1035	1038	1040	1042	1045	0	0	1	1	1	1	2	2	2
0.02	1047	1050	1052	1054	1057	1059	1062	1064	1067	1069	0	0	1	1	1	1	2	2	2
0.03	1072	1074	1076	1079	1081	1084	1086	1089	1091	1094	0	0	1	1	1	1	2	2	2
0.04	1096	1099	1102	1104	1107	1109	1112	1114	1117	1119	0	1	1	1	1	2	2	2	2
0.05	1122	1125	1127	1130	1132	1135	1138	1140	1143	1146	0	1	1	1	1	2	2	2	2
0.06	1148	1151	1153	1156	1159	1161	1164	1167	1169	1172	0	1	1	1	1	2	2	2	2
0.07	1175	1178	1180	1183	1186	1189	1191	1194	1197	1199	0	1	1	1	1	2	2	2	2
0.08	1202	1205	1208	1211	1213	1216	1219	1222	1225	1227	0	1	1	1	1	2	2	2	3
0.09	1230	1233	1236	1239	1242	1245	1247	1250	1253	1256	0	1	1	1	1	2	2	2	3
0.10	1259	1262	1265	1268	1271	1274	1276	1279	1282	1285	0	1	1	1	1	2	2	2	3
0.11	1288	1291	1294	1297	1300	1303	1306	1309	1312	1315	0	1	1	1	2	2	2	2	3
0.12	1318	1321	1324	1327	1330	1334	1337	1340	1343	1346	0	1	1	1	2	2	2	2	3
0.13	1349	1352	1355	1358	1361	1365	1368	1371	1374	1377	0	1	1	1	2	2	2	3	3
0.14	1380	1384	1387	1390	1393	1396	1400	1403	1406	1409	0	1	1	1	2	2	2	3	3
0.15	1413	1416	1419	1422	1426	1429	1432	1435	1439	1442	0	1	1	1	2	2	2	3	3
0.16	1445	1449	1452	1455	1459	1462	1466	1469	1472	1476	0	1	1	1	2	2	2	3	3
0.17	1479	1483	1486	1489	1493	1496	1500	1503	1507	1510	0	1	1	1	2	2	2	3	3
0.18	1514	1517	1521	1524	1528	1531	1535	1538	1542	1545	0	1	1	1	2	2	2	3	3
0.19	1549	1552	1556	1560	1563	1567	1570	1574	1578	1581	0	1	1	1	2	2	3	3	3
0.20	1585	1589	1592	1596	1600	1603	1607	1611	1614	1618	0	1	1	1	2	2	3	3	3
0.21	1622	1626	1629	1633	1637	1641	1644	1648	1652	1656	0	1	1	2	2	2	3	3	3
0.22	1660	1663	1667	1671	1675	1679	1683	1687	1690	1694	0	1	1	2	2	2	3	3	3
0.23	1698	1702	1706	1710	1714	1718	1722	1726	1730	1734	0	1	1	2	2	2	3	3	4
0.24	1738	1742	1746	1750	1754	1758	1762	1766	1770	1774	0	1	1	2	2	2	3	3	4
0.25	1778	1782	1786	1791	1795	1799	1803	1807	1811	1816	0	1	1	2	2	2	3	3	4
0.26	1820	1824	1828	1832	1837	1841	1845	1849	1854	1858	0	1	1	2	2	3	3	3	4
0.27	1862	1866	1871	1875	1879	1884	1888	1892	1897	1901	0	1	1	2	2	3	3	3	4
0.28	1905	1910	1914	1919	1923	1928	1932	1936	1941	1945	0	1	1	2	2	3	3	4	4
0.29	1950	1954	1959	1963	1968	1972	1977	1982	1986	1991	0	1	1	2	2	3	3	4	4
0.30	1995	2000	2004	2009	2014	2018	2023	2028	2032	2037	0	1	1	2	2	3	3	4	4
0.31	2042	2046	2051	2056	2061	2065	2070	2075	2080	2084	0	1	1	2	2	3	3	4	4
0.32	2089	2094	2099	2104	2109	2113	2118	2123	2128	2133	0	1	1	2	2	3	3	4	4
0.33	2138	2143	2148	2153	2158	2163	2168	2173	2178	2183	0	1	1	2	2	3	3	4	4
0.34	2188	2193	2198	2203	2208	2213	2218	2223	2228	2234	1	1	2	2	3	3	4	4	5
0.35	2239	2244	2249	2254	2259	2265	2270	2275	2280	2286	1	1	2	2	3	3	4	4	5
0.36	2291	2296	2301	2307	2312	2317	2323	2328	2333	2339	1	1	2	2	3	3	4	4	5
0.37	2344	2350	2355	2360	2366	2371	2377	2382	2388	2393	1	1	2	2	3	3	4	4	5
0.38	2399	2404	2410	2415	2421	2427	2432	2438	2443	2449	1	1	2	2	3	3	4	4	5
0.39	2455	2460	2466	2472	2477	2483	2489	2495	2500	2506	1	1	2	2	3	3	4	5	5
0.40	2512	2518	2523	2529	2535	2541	2547	2553	2559	2564	1	1	2	2	3	4	4	5	5
0.41	2570	2576	2582	2588	2594	2600	2606	2612	2618	2624	1	1	2	2	3	4	4	5	5
0.42	2630	2636	2642	2649	2655	2661	2667	2673	2679	2685	1	1	2	2	3	4	4	5	6
0.43	2692	2698	2704	2710	2716	2723	2729	2735	2742	2748	1	1	2	3	3	4	4	5	6
0.44	2754	2761	2767	2773	2780	2786	2793	2799	2805	2812	1	1	2	3	3	4	4	5	6
0.45	2818	2825	2831	2838	2844	2851	2858	2864	2871	2877	1	1	2	3	3	4	5	5	6
0.46	2884	2891	2897	2904	2911	2917	2924	2931	2938	2944	1	1	2	3	3	4	5	5	6
0.47	2951	2958	2965	2972	2979	2985	2992	2999	3006	3013	1	1	2	3	3	4	5	5	6
0.48	3020	3027	3034	3041	3048	3055	3062	3069	3076	3083	1	1	2	3	4	4	5	6	6
0.49	3090	3097	3105	3112	3119	3126	3133	3141	3148	3155	1	1	2	3	4	4	5	6	6

11 -32-

ANTILOGARITHMS

	0	1	2	3	4	5	6	7	8	9	1	2	3	4	5	6	7	8	9
0.50	3162	3170	3177	3184	3192	3199	3206	3214	3221	3228	1	1	2	3	4	4	5	6	7
0.51	3236	3243	3251	3258	3266	3273	3281	3289	3296	3304	1	2	2	3	4	5	5	6	7
0.52	3311	3319	3327	3334	3342	3350	3357	3365	3373	3381	1	2	2	3	4	5	5	6	7
0.53	3388	3396	3404	3412	3420	3428	3436	3443	3451	3459	1	2	2	3	4	5	6	6	7
0.54	3467	3475	3483	3491	3499	3508	3516	3524	3532	3540	1	2	2	3	4	5	6	6	7
0.55	3548	3556	3565	3573	3581	3589	3597	3606	3614	3622	1	2	2	3	4	5	6	7	7
0.56	3631	3639	3648	3656	3664	3673	3681	3690	3698	3707	1	2	3	3	4	5	6	7	8
0.57	3715	3724	3733	3741	3750	3758	3767	3776	3784	3793	1	2	3	3	4	5	6	7	8
0.58	3802	3811	3819	3828	3837	3846	3855	3864	3873	3882	1	2	3	4	4	5	6	7	8
0.59	3890	3899	3908	3917	3926	3936	3945	3954	3963	3972	1	2	3	4	5	5	6	7	8
0.60	3981	3990	3999	4009	4018	4027	4036	4046	4055	4064	1	2	3	4	5	6	6	7	8
0.61	4074	4083	4093	4102	4111	4121	4130	4140	4150	4159	1	2	3	4	5	6	7	8	9
0.62	4169	4178	4188	4198	4207	4217	4227	4236	4246	4256	1	2	3	4	5	6	7	8	9
0.63	4266	4276	4285	4295	4305	4315	4325	4335	4345	4355	1	2	3	4	5	6	7	8	9
0.64	4365	4375	4385	4396	4406	4416	4426	4436	4446	4457	1	2	3	4	5	6	7	8	9
0.65	4467	4477	4487	4498	4508	4519	4529	4539	4550	4560	1	2	3	4	5	6	7	8	9
0.66	4571	4581	4592	4603	4613	4624	4634	4645	4656	4667	1	2	3	4	5	6	7	9	10
0.67	4677	4688	4699	4710	4721	4732	4742	4753	4764	4775	1	2	3	4	5	7	8	9	10
0.68	4786	4797	4808	4819	4831	4842	4853	4864	4875	4887	1	2	3	4	6	7	8	9	10
0.69	4898	4909	4920	4932	4943	4955	4966	4977	4989	5000	1	2	3	5	6	7	8	9	10
0.70	5012	5023	5035	5047	5058	5070	5082	5093	5105	5117	1	2	4	5	6	7	8	9	11
0.71	5129	5140	5152	5164	5176	5188	5200	5212	5224	5236	1	2	4	5	6	7	8	10	11
0.72	5248	5260	5272	5284	5297	5309	5321	5333	5346	5348	1	2	4	5	6	7	9	10	11
0.73	5370	5383	5395	5408	5420	5433	5445	5458	5470	5483	1	3	4	5	6	8	9	10	11
0.74	5495	5508	5521	5534	5546	5559	5572	5585	5598	5610	1	3	4	5	6	8	9	10	12
0.75	5623	5636	5649	5662	5675	5689	5702	5715	5728	5741	1	3	4	5	7	8	9	10	12
0.76	5754	5768	5781	5794	5808	5821	5834	5848	5861	5875	1	3	4	5	7	8	9	11	12
0.77	5888	5902	5916	5929	5943	5957	5970	5984	5998	6012	1	3	4	5	7	8	10	11	12
0.78	6026	6039	6053	6067	6081	6095	6109	6124	6138	6152	1	3	4	6	7	8	10	11	13
0.79	6166	6180	6194	6209	6223	6237	6252	6266	6281	6295	1	3	4	6	7	8	10	11	13
0.80	6310	6324	6339	6353	6368	6383	6397	6412	6427	6442	1	3	4	6	7	9	10	12	13
0.81	6457	6471	6486	6501	6516	6531	6546	6561	6577	6592	2	3	5	6	8	9	11	12	14
0.82	6607	6622	6637	6653	6668	6683	6699	6714	6730	6745	2	3	5	6	8	9	11	12	14
0.83	6761	6776	6792	6808	6823	6839	6855	6871	6887	6902	2	3	5	6	8	9	11	13	14
0.84	6918	6934	6950	6966	6982	6998	7015	7031	7047	7063	2	3	5	6	8	10	11	13	15
0.85	7079	7096	7112	7129	7145	7161	7178	7194	7211	7228	2	3	5	7	8	10	12	13	15
0.86	7244	7261	7278	7295	7311	7328	7345	7362	7379	7396	2	3	5	7	8	10	12	13	15
0.87	7413	7430	7447	7464	7482	7499	7516	7534	7551	7568	2	3	5	7	9	10	12	14	16
0.88	7586	7603	7621	7638	7656	7674	7691	7709	7727	7745	2	4	5	7	8	11	12	14	16
0.89	7762	7780	7798	7816	7834	7852	7870	7889	7907	7925	2	4	5	7	9	11	13	14	16
0.90	7943	7962	7980	7998	8017	8035	8054	8072	8091	8110	2	4	6	7	9	11	13	15	17
0.91	8128	8147	8166	8185	8204	8222	8241	8260	8279	8299	2	4	6	8	9	11	13	15	17
0.92	8318	8337	8356	8375	8395	8414	8433	8453	8472	8492	2	4	6	8	10	12	14	15	17
0.93	8511	8531	8551	8570	8590	8610	8630	8650	8670	8690	2	4	6	8	10	12	14	16	18
0.94	8710	8730	8750	8770	8790	8810	8831	8851	8872	8892	2	4	6	8	10	12	14	16	18
0.95	8913	8933	8954	8974	8995	9016	9036	9057	9078	9099	2	4	6	8	10	12	15	17	19
0.96	9120	9141	9162	9183	9204	9220	9247	9268	9290	9311	2	4	6	8	11	13	15	17	19
0.97	9333	9354	9376	9397	9419	9441	9462	9484	9506	9528	2	4	7	9	11	13	15	17	20
0.98	9550	9572	9594	9616	9638	9661	9683	9705	9727	9750	2	4	7	9	11	13	16	18	20
0.99	9772	9795	9817	9840	9863	9886	9908	9931	9954	9977	2	5	7	9	11	14	16	18	20

